首页> 外文OA文献 >Model-based learning of local image features for unsupervised texture segmentation
【2h】

Model-based learning of local image features for unsupervised texture segmentation

机译:基于模型的无监督纹理局部图像特征学习   分割

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Features that capture well the textural patterns of a certain class of imagesare crucial for the performance of texture segmentation methods. The manualselection of features or designing new ones can be a tedious task. Therefore,it is desirable to automatically adapt the features to a certain image or classof images. Typically, this requires a large set of training images with similartextures and ground truth segmentation. In this work, we propose a framework tolearn features for texture segmentation when no such training data isavailable. The cost function for our learning process is constructed to match acommonly used segmentation model, the piecewise constant Mumford-Shah model.This means that the features are learned such that they provide anapproximately piecewise constant feature image with a small jump set. Based onthis idea, we develop a two-stage algorithm which first learns suitableconvolutional features and then performs a segmentation. We note that thefeatures can be learned from a small set of images, from a single image, oreven from image patches. The proposed method achieves a competitive rank in thePrague texture segmentation benchmark, and it is effective for segmentinghistological images.
机译:可以很好地捕获特定类别图像的纹理图案的功能对于纹理分割方法的性能至关重要。手动选择功能或设计新功能可能是一项繁琐的任务。因此,期望自动使特征适应特定图像或图像类别。通常,这需要大量具有相似纹理和地面真实分割的训练图像。在这项工作中,我们提出了一个框架,用于在没有此类训练数据时学习纹理分割特征。我们的学习过程的成本函数被构造为与常用的分割模型(分段的恒定Mumford-Shah模型)匹配,这意味着学习特征以使其提供具有较小跳跃集的近似分段的恒定特征图像。基于此思想,我们开发了一种两阶段算法,该算法首先学习合适的卷积特征,然后执行分割。我们注意到,可以从少量图像,单个图像甚至图像补丁中学习特征。所提出的方法在布拉格纹理分割基准中获得了竞争优势,对组织学图像的分割是有效的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号